
7 小標本のための手法

医学研究は，大規模にデータが集められる理想的な状況でのみ行
われるわけではない．ミシガン ECMO試験のようにサンプルサイズ
が小さいこともある．このとき，最尤法の前提条件が満たされない
ため，それに代わる手法が必要になる．この章で述べられるのは小
標本しか得られない状況への対処法である．統計学の文献では多く
のテクニックや統計手法が提案されてきたが，ごく大まかにいえば
変数変換，正確な確率計算，ペナルティ付き尤度という 3つのアプ
ローチに大別できる．具体的な手法として，2値データのための信
頼区間の構成方法を 3つ紹介する．
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事 例 ハーバード ECMO試験，ミシガン ECMO試験� �
7. 1 変数変換，正確な確率計算，ペナルティ付き尤度∗1)

Wald 信頼区間は，汎用性が高く計算負荷が小さいため，ソフトウェアのデ
フォルトになっていることが多い．しかし，サンプルサイズが小さいと正規分
布への近似精度が落ちる．目安として，2値データ・計数データ・生存時間デー
タの解析では，パラメータの数のおよそ 5倍のイベント数が観察できない場合
は，別の手法を検討すべきである．
これまで統計学の文献で提案されてきたアプローチは 3つに大別できる．第
一のアプローチは，すでに述べたパラメータ変換である．第二のアプローチと

∗1) 紙面の都合のため，この章で紹介できた手法は 2 値データのための信頼区間の構成方法に限られ
ている．これは小標本が問題になる典型的な状況が 2 値データだからである．それ以外のデー
タについては，ペナルティ付き尤度または Bayes 流の推測を応用するアプローチがよい．
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して，近似は行わず，正確な確率計算によって，信頼区間を構成したり，p値
を計算したりすることもできる．ただし，パラメータの数が多い一般化線型モ
デルでは，このアプローチは計算負荷が大きい．そこで実践的に重要になるの
はペナルティ付き尤度を用いるアプローチである．

7. 2 Clopper–Pearson信頼区間

実際のデータ解析では，2値データの割合 πの信頼区間を求める問題によく
遭遇する．このとき有用なのが正確な信頼区間（Clopper–Pearson信頼区間）で
ある（Clopper and Pearson 1934）．この信頼区間の下側限界は，2項分布に従う
確率変数の実現値を y，信頼係数を α とすると，2項分布の確率関数を含む方
程式

y∑
i=0

Pr(Y = i; π,N ) =
α

2

を πについて解くことで得られる．この方程式を直接解くのは面倒である．だ
が，2項分布と F分布の分布関数には，以下の関係があることが知られていて，
これを利用することができる．

y∑
i=0

Pr(Y = i; π,N ) = Pr
[
F <

(N − y + 1)π
y(1 − π)

]
ここで Fは，F分布に従う確率変数を表す．これを πについて解いて，Clopper–

Pearsonの下側限界

100 (1 − α) % lower limit =
y

y + (N − y + 1)Fα/2

が導かれる．ここで，Fα/2は自由度 2(N−y+1)と 2yを持つF分布の 100(1−α/2)

パーセント点である．上側限界は
N∑
i=y

Pr(Y = y; π,N ) =
α

2

と定義され，同じように F分布を参照することで計算できる．

7. 3 Mid-p法

一般に，正確な手法は，参照する確率分布が離散分布であるため，指定した
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水準通りの確率計算ができず，保守的になることがある∗2)．このような離散検
定の特徴は，Mid-p法を用いることで補正することができる（Lancaster 1949）．
Mid-p法とは，信頼区間や p値の計算において，裾側確率 Pr(Y ≤ y)の代わりに，
観測データが生じる 1点の確率の半分だけ減らした，Pr(Y < y) + Pr(Y = y)/2

を用いる手法である．
Mid-p法で補正した Clopper–Pearson信頼区間の上側限界と下側限界は，それ
ぞれ

y−1∑
i=0

Pr(Y = i; π,N ) +
1
2

Pr(Y = y; π,N ) =
α

2

N∑
i=y+1

Pr(Y = i; π,N ) +
1
2

Pr(Y = y; π,N ) =
α

2

の解として定義される．つまり，裾側確率の計算において，確率の半分つまり
Pr(Y = y; π,N )/2だけ加えないことで，p値を小さく（有意になりやすく）補正
するのである．

7. 4 事例：2値アウトカムの臨床試験の解析 2

ミシガン ECMO試験の次に行われた ECMO臨床試験（ハーバード ECMO試
験）の第 2ステージでは，ECMOにより治療を受けた 20人中 1人が死亡した
（O’Rourke, et al. 1989）．このデータから，死亡割合の 95%Wald信頼区間を求
めると

95% CI = 0.05 ± 1.96
√

0.05(1 − 0.05)/20 = [−0.046, 0.146]

となる．このように，2項確率の 95%Wald信頼区間は，[0, 1]の範囲を越える
ことがある．一方で，95%Clopper–Pearson信頼区間を計算すると，正確な手法
とMid-p法の結果はそれぞれ [0.001, 0.249]と [0.003, 0.223]となる．このよう
にWald信頼区間と Clopper–Pearson信頼区間は，サンプルサイズが小さいとき
かなり異なる結果を与える．

∗2) 信頼区間が広すぎたり，検定が過度に有意になりにくかったりする傾向を保守的（conservative）と
いう．たとえば 95%信頼区間であれば，その区間が広く，言い換えれば真値を含む確率が 95%よ
り高いことをいう．
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7. 5 ペナルティ付き尤度

正確な手法よりも汎用的なアプローチとしてペナルティ付き尤度∗3) がある．
これらの手法は，対数尤度関数にペナルティ項（正則化項）を追加した

pl (θ) = l (θ) + penalty

に基づいて推測を行う．Bayes流の推測では本質的に，ペナルティ項として事
前分布の対数が用いられている．それ以外にもよい性質を持つペナルティ項と
してさまざまなものが考えられる．
歴史的に 2項分布の推測のためによく用いられてきたのは，ベータ分布に由
来するペナルティ項である．2項尤度

l (π) = y log(π) + (N − y) log(1 − π)

に，ベータ分布の確率密度関数の対数を加えると

pl (π) = y log(π) + (N − y) log(1 − π) + (a − 1) log(π) + (b − 1) log(1 − π)

= (y + a − 1) log(π) + (N − y + b − 1) log(1 − π)

となる．これは，2項分布の 0または 1が出現した回数に，それぞれ aと bを
足したときの対数尤度関数と同じものである．ベータ分布は，共役事前分布と
いって，ペナルティを付けた後も，関数形は 2項尤度の形式のまま変わらない
という特性がある．aと bに小さな値を加えただけで，Wald信頼区間の性能を
かなり改善することができる．Agresti（2000）によれば，a = b = 2を用いた

π̂ =
y + 2
N + 4

, 95% CI = π̂ ± 1.96

√
π̂(1 − π̂)

N + 4
は，ほとんどあらゆる状況で 95%Wald信頼区間よりも優れている．これをAgresti

（アグレスティ）信頼区間という．また，Gart and Zweifel（1967）は，対数オッズ
θ = log[π/(1−π)]の推定においていくつかの推定量を検討した結果，a = b = 1/2

というわずかな補正を加えた

θ̂ = log
(

y + 1/2
N − y + 1/2

)

∗3) ペナルティ付き尤度は統計学のさまざまな分野で使われてきたテクニックである．そのため，文
脈に応じて，正則化（reguralization），縮小推定（shrinkage），Bayes 推定と呼ばれることもある．
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95% CI = θ̂ ± 1.96

√
1

y + 1/2
+

1
N − y + 1/2

を推奨している．この推定量・標準誤差は，最尤法によるものより，サンプル
サイズが増えると真値に速く収束することがわかっている．これらの手法は，a

と bの選択に恣意性を感じるかもしれないが，y = 0または y = N のときにも
計算できるという点で魅力的である．
サンプルサイズに比べてパラメータの数が多いとき，正確な手法は計算負荷
が大きい．それに対して，ペナルティ付き尤度は，パラメータの数が増えたり，
モデルが複雑になったりしても，Bayes推測の枠組みで拡張することができる．
特に，小規模な研究で 2値データに一般化線型モデルを当てはめるときには，
事前分布として Cauchy分布を用いた Bayes流のロジスティック回帰が推奨さ
れている（Gelman，et al. 2008）．

7. 6 事例：2値アウトカムの臨床試験の解析 3

ミシガン ECMO試験では，ECMO群と従来療法群の死亡割合は，それぞれ
0%と 100%で，数字上は大きな差があった．しかしこの場合は，試験デザイン
が特殊で，サンプルサイズが非常に小さい．このようなときどのように解析す
ればよいだろうか．この場合は，仮説検定の性能が保証されないから，死亡割
合に差がないという帰無仮説が棄却されるかどうかで結論を下すべきではない．
観察された死亡割合にどれくらいの誤差があるかを表示した方が有益である．
表 7-1に，4通りの手法で求めた 95%信頼区間を示す．Clopper–Pearson法，

Mid-p法，Agresti法のいずれも，従来療法群の信頼区間の幅は非常に広い．こ
れは，1人しかいない従来療法群の患者が偶然によって死亡したという可能性
が否定できないことを示している．

表 7-1 ミシガン ECMO 試験データにおける信頼区間の比較

ECMO 従来療法
割合 95%信頼区間 割合 95%信頼区間

Wald 法 0% 推定不能 100% 推定不能
Clopper–Pearson 法 0% 0 ∼ 28.5% 100% 2.5 ∼ 100%
Mid-p 法 0% 0 ∼ 23.8% 100% 5.0 ∼ 100%
Agresti 法 0% 0 ∼ 30.5% 100% 17.1 ∼ 100%
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演 習 問 題

〈Agresti信頼区間〉

問 1 対象者数 10人の臨床試験において，2人が死亡した．死亡割合の 95%Wald信
頼区間と 95%Agresti信頼区間として，正しい組み合わせを選べ．ただし，数値は 3

桁で丸めてある．
(A) Wald CI = [0,0.448], Agresti CI = [0.05,0.522]

(B) Wald CI = [ − 0.05,0.448],Agresti CI = [0.05,0.522]

(C) Wald CI = [0.05,0.522], Agresti CI = [0,0.448]

(D) Wald CI = [0.05,0.522], Agresti CI = [ − 0.05,0.448]


